
www.umbc.eduAll materials copyright UMBC unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 11 – Functions (Continued)

www.umbc.edu

Last Class We Covered

• Functions

–Why they’re useful

–When you should use them

• Calling functions

• Variable scope

• Passing parameters

2

www.umbc.edu3

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To introduce value-returning functions

• To understand mutability (and immutability)

– To better grasp how values in the scope of a
function actually work

• To practice function calls and some special
situations

4

www.umbc.edu5

Review: Parts of a Function

www.umbc.edu

Function Vocabulary

6

def myFunc(year, name)

lines of code

def main():

myFunc(2015, "Xavier")

main()

function _______
_____ _________

_____ _________

function _____

function ___

www.umbc.edu

Function Vocabulary

7

def myFunc(year, name)

lines of code

def main():

myFunc(2015, "Xavier")

main()

function d______
f_____ p________

a____ p________

function b____

function c__

www.umbc.edu

Function Vocabulary

8

def myFunc(year, name)

lines of code

def main():

myFunc(2015, "Xavier")

main()

function definition
formal parameters

actual parameters

function body

function call

www.umbc.edu

Visual Code Trace

9

def main():

sing("Maya")

print()

sing("Luke")

def sing(person):

happy()

happy()

print("Happy BDay", person)

happy()

"Maya"

person: "Maya"

def happy():

print("Happy BDay to you!")

www.umbc.edu10

Return Statements

www.umbc.edu

Giving Information to a Function

• Passing parameters provides a mechanism for
initializing the variables in a function

• Parameters act as inputs to a function

• We can call a function many times and get
different results by changing its parameters

11

www.umbc.edu

Getting Information from a Function

• We’ve already seen numerous examples of
functions that return values

int() , str(), input(), etc.

• For example, int()

– Takes in any string as its parameter

– Processes the digits in the string

– And returns an integer value

12

www.umbc.edu

Functions that Return Values

• To have a function return a value after it is
called, we need to use the return keyword

def square(num):

return the square

return (num * num)

13

www.umbc.edu

Handling Return Values

• When Python encounters return, it

– Exits the function

–Returns control back to where
the function was called

– Similar to reaching the end of a function

• The value provided in the return statement is
sent back to the caller as an expression result

14

www.umbc.edu

Code Trace: Return from square()

15

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()

Let’s follow the flow of the code

www.umbc.edu

Code Trace: Return from square()

16

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Let’s follow the flow of the code

www.umbc.edu

Code Trace: Return from square()

17

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5

Let’s follow the flow of the code

www.umbc.edu

Code Trace: Return from square()

18

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5
Step 4: See the function call to square()

Let’s follow the flow of the code

www.umbc.edu

Code Trace: Return from square()

19

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5
Step 4: See the function call to square()
Step 5: Pass control from main() to square()

Let’s follow the flow of the code

www.umbc.edu

Code Trace: Return from square()

20

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5
Step 4: See the function call to square()
Step 5: Pass control from main() to square()
Step 6: Set the value of num1 in square() to x

Let’s follow the flow of the code

num1 = 5

www.umbc.edu

Code Trace: Return from square()

21

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5
Step 4: See the function call to square()
Step 5: Pass control from main() to square()
Step 6: Set the value of num1 in square() to x
Step 7: Calculate num1 * num1

Let’s follow the flow of the code

num1 = 5

www.umbc.edu

Code Trace: Return from square()

22

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5
Step 4: See the function call to square()
Step 5: Pass control from main() to square()
Step 6: Set the value of num1 in square() to x
Step 7: Calculate num1 * num1

Step 8: Return to main() and set y = return statement

Let’s follow the flow of the code

num1 = 5

www.umbc.edu

Code Trace: Return from square()

23

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5
Step 4: See the function call to square()
Step 5: Pass control from main() to square()
Step 6: Set the value of num1 in square() to x
Step 7: Calculate num1 * num1

Step 8: Return to main() and set y = return statement
Step 9: Print value of y

Let’s follow the flow of the code

www.umbc.edu

Testing: Return from square()

>>> print(square(3))

9

>>> print(square(4))

16

>>> x = 5

>>> y = square(x)

>>> print(y)

25

>>> print(square(x) + square(3))

34

24

www.umbc.edu25

Functions with
Multiple Return Values

www.umbc.edu

Returning Multiple Values

• Sometimes a function needs to
return more than one value

• To do this, simply list more than one
expression in the return statement

def sumDiff(num1, num2):

sum = num1 + num2

diff = num1 – num2

return sum, diff

26

www.umbc.edu

Accepting Multiple Values

• When calling a function with multiple returns,
the code must also use multiple assignments

• Assignment is based on position, just like
passing in parameters is based on position

sum, diff = sumDiff(xVal, yVal)

27

www.umbc.edu

Accepting Multiple Values
def main():

first = int(input("Enter first number: "))

second = int(input("Enter second number: "))

sum, diff = sumDiff(first, second)

print("The sum is", sum,

"and the difference is", diff)

def sumDiff(num1, num2):

theSum = num1 + num2

theDiff = num1 - num2

return theSum, theDiff

main()

28

www.umbc.edu

def main():

first = int(input("Enter first number: "))

second = int(input("Enter second number: "))

sum, diff = sumDiff(first, second)

print("The sum is", sum,

"and the difference is", diff)

def sumDiff(num1, num2):

theSum = num1 + num2

theDiff = num1 - num2

return theSum, theDiff

main()

Accepting Multiple Values

29

sum gets the first
value returned

diff gets the second
value returned

www.umbc.edu

def main():

first = int(input("Enter first number: "))

second = int(input("Enter second number: "))

sum, diff = sumDiff(first, second)

print("The sum is", sum,

"and the difference is", diff)

def sumDiff(num1, num2):

theSum = num1 + num2

theDiff = num1 - num2

return theSum, theDiff

main()

Accepting Multiple Values

30

Notice that none of
the variable names

match!

Variable names do not
need to match when

calling a function.

Remember scope!

www.umbc.edu

Every Function Returns Something

• All Python functions return a value

– Even if they don’t have a return statement

• Functions without an explicit return hand
back a special object, called None

– None is the absence of a value

31

www.umbc.edu

Common Errors and Problems

• Writing a function that returns a value but…

• Forgetting to include the return statement
>>> def test():

... print("In the fxn")

... var = 3

>>> var2 = test()

In the fxn

>>> print(var2)

None

32

Variable assigned to
the return value will

be None.

www.umbc.edu

Common Errors and Problems

• Writing a function that returns a value but…

• Forgetting to assign that value to anything
>>> def test():

... print("In the fxn")

... return 3

>>> var2 = 7

>>> test()

In the fxn

>>> print(var2)

7
33

The variable var2 was
not updated; the code

should have read
var2 = test()

www.umbc.edu

Common Errors and Problems

• Writing a function that returns value(s) but…

• Not assigning the right number of variables
>>> def test():

... print("In the fxn")

... return 3

>>> var1, var2 = test()

In the fxn

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'int' object is not iterable
34

www.umbc.edu

Common Errors and Problems

• If your value-returning functions produce
strange messages, check to make sure you
used the return correctly!

TypeError: 'int' object is not iterable

TypeError: 'NoneType' object is not

iterable

35

www.umbc.edu36

Modifying Parameters

www.umbc.edu

Other Ways to Pass Back Information

• A return value is the main way to send
information back from a function

• We may also be able to pass information back
by making changes directly to the parameters

• One of the problems with modifying
parameters is due to scope

37

www.umbc.edu

Bank Interest Example

• Suppose you are writing a program that
manages bank accounts

• One function we would need to create is one
to accumulate interest on the account

38

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

www.umbc.edu

Bank Interest Example

• We want to set the balance of the account to
a new value that includes the interest amount

39

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

main()
Is this what

we expected?

1000

Image from pixabay.com

What is the output
of this code?

www.umbc.edu

What’s Going On?

• We thought that the 5% would be
added to the amount, returning $1050

• Was $1000 the expected output?

• No – so what went wrong?

– Let’s trace through the program and find out

40

www.umbc.edu

Tracing the Bank Interest Code
• First, we create two variables that are local to
main()

41

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

main()

local variables
of main()

www.umbc.edu

Tracing the Bank Interest Code
• Second, we call addInterest() and pass the

local variables of main() as actual parameters

42

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

main()

Call to
addInterest()

Passing amount
and rate, which are

local variables

www.umbc.edu

Tracing the Bank Interest Code
• Third, when control is passed to addInterest(),

the formal parameters of (balance and rate) are set
to the actual parameters of (amount and rate)

43

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

main()

Control passes to
addInterest()

balance = amount

rate = rate

www.umbc.edu

Tracing the Bank Interest Code
• Even though the parameter rate appears in both
main() and addInterest(), they are two
separate variables because of scope

44

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

main()

Even though rate is in
both main() and
addInterest(),

they are in different
places in memory

www.umbc.edu

Scope

• In other words, the formal parameters
of a function only receive the values of
the actual parameters

• The function does not have access
to the variable in main() that holds
the actual parameter

45

www.umbc.edu46

Mutability

www.umbc.edu

Mutable and Immutable

• In python, certain structures cannot be altered
once they are created and are called immutable

– These include integers, strings, and tuples

• Other structures can be altered after
they are created and are called mutable

– These include lists and dictionaries

47

www.umbc.edu

Scope and Mutability in Functions

• To get a better idea for how this works with
functions, let’s look at an example

• We can call a function with actual parameters
that are mutable or that are immutable

• When we alter the formal parameters in the
function, we could overwrite, or we could
update it (change the parameter in place)

48

www.umbc.edu

Scope and Mutability in Functions

49 From http://stackoverflow.com/a/25670170

Function is called, and formal parameter B
is assigned the actual parameter A

A is immutable
(int, string, tuple)

A is mutable
(lists, or dicts)

A doesn’t change
If B changes

B is assigned to
something else
B = [0, 1]

B is modified
in place

B.append(2)

A doesn’t change
If B changes

A changes
If B changes

www.umbc.edu

Scope and Mutability in Functions

• A good general rule for if it will be altered:

• When you use the assignment operator, the
parameter won’t actually be changed in main()

– Unless you are editing one element, like in a list

• When you use something like .append() on
the parameter, it will be changed in main()

50

www.umbc.edu51

The Bank Interest Example

www.umbc.edu

Updating Bank Interest

• The variable we wanted to update, balance,
is a float, which means it is...

– Immutable

• We can’t change it from within the function

• What other options do we have?

– Change the function so it returns a newBalance

52

www.umbc.edu

New Bank Interest Code

53

def main():

amount = 1000

rate = 0.05

amount = addInterest(amount, rate)

print(amount)

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

return newBalance

main()

www.umbc.edu

New Bank Interest Code

54

def main():

amount = 1000

rate = 0.05

amount = addInterest(amount, rate)

print(amount)

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

return newBalance

main()

These are the only
parts we changed

www.umbc.edu

New Bank Interest Code Trace

55

def main():

amount = 1000

rate = 0.05

amount = addInt(amount, rate)

print(amount)

main()

def addInt(balance, rate):

newBal = balance * (1 + rate)

return newBal

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set amount = 1000 and rate = 0.05
Step 4: Set amount = return statement of addInt()
Step 5: Pass control from main() to addInt()
Step 6: Set the value of balance in addInt() to amount
Step 7: Set the value of rate in addInt() to rate
Step 8: Set value of newBal to balance * (1 + rate)
Step 9: Return to main() and set value of amount = newBal
Step 10: Print value of amount

Let’s follow the flow of the code

Once we leave addInt(), the
values of balance and rate are

removed from memory

www.umbc.edu56

Passing Lists to Functions

www.umbc.edu

Multiple Bank Accounts

• Instead of a single account, we are writing a
program for a bank that has many accounts

–We could store the account balances in a
list, then update the interest for each
balance in the list

• We could update the first balance in the list
with code like:
balances[0] = balances[0] * (1 + rate)

57

www.umbc.edu

Multiple Bank Accounts

balances[0] = balances[0] * (1 + rate)

• This code says, “multiply the value in the 0th

position of the list by (1 + rate) and store the
result back into the 0th position of the list”

• A more general way to do this would be
with a loop that goes through the indexes
from 0, 1, …, length – 1

58

www.umbc.edu

Example: Multiple Interest
addinterest3.py

Illustrates a mutable parameter (a list)

def addInterest(balances, rate):

for i in range(len(balances)):

balances[i] = balances[i] * (1 + rate)

def main():

amounts = [1000, 2200, 800, 360]

rate = 0.05

addInterest(amounts, rate)

print(amounts)

main()

59

www.umbc.edu

Multiple Interest Output

• Our original code had these values:
[1000, 2200, 800, 360]

• The program returns:
[1050.0, 2310.0, 840.0, 378.0]

• Because balances is a list, and we are
updating it in place, so the actual values are
changed

60

www.umbc.edu

Announcements

• Homework 5 is due Wednesday

– Homework 3 grades went out Sunday night

• Homework 6 does not come out this week

– It will come out the night of October 20th

• The midterm exam is when?

– During class on October 19th and 20th!

61

