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Computer Science I for Majors

Lecture 11 – Functions (Continued)
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Last Class We Covered

• Functions

–Why they’re useful

–When you should use them

• Calling functions

• Variable scope

• Passing parameters
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Any Questions from Last Time?
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Today’s Objectives

• To introduce value-returning functions

• To understand mutability (and immutability)

– To better grasp how values in the scope of a 
function actually work

• To practice function calls and some special 
situations

4
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Review: Parts of a Function
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Function Vocabulary

6

def myFunc(year, name)

# lines of code

def main():

myFunc(2015, "Xavier")

main()

function _______
_____ _________

_____ _________

function _____

function ___



www.umbc.edu

Function Vocabulary

7

def myFunc(year, name)

# lines of code

def main():

myFunc(2015, "Xavier")

main()

function d______
f_____ p________

a____ p________

function b____

function c__
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Function Vocabulary

8

def myFunc(year, name)

# lines of code

def main():

myFunc(2015, "Xavier")

main()

function definition
formal parameters

actual parameters

function body

function call
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Visual Code Trace

9

def main():

sing("Maya")

print()

sing("Luke")

def sing(person):

happy()

happy()

print("Happy BDay", person)

happy()

"Maya"

person:  "Maya"

def happy():

print("Happy BDay to you!")
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Return Statements
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Giving Information to a Function

• Passing parameters provides a mechanism for 
initializing the variables in a function

• Parameters act as inputs to a function

• We can call a function many times and get 
different results by changing its parameters

11
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Getting Information from a Function

• We’ve already seen numerous examples of 
functions that return values

int() , str(), input(), etc.

• For example, int()

– Takes in any string as its parameter

– Processes the digits in the string

– And returns an integer value

12
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Functions that Return Values

• To have a function return a value after it is 
called, we need to use the return keyword

def square(num):

# return the square

return (num * num)

13
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Handling Return Values

• When Python encounters return, it

– Exits the function

–Returns control back to where 
the function was called

– Similar to reaching the end of a function

• The value provided in the return statement is 
sent back to the caller as an expression result

14
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Code Trace: Return from square()

15

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()

Let’s follow the flow of the code
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Code Trace: Return from square()

16

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Let’s follow the flow of the code
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Code Trace: Return from square()

17

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5

Let’s follow the flow of the code
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Code Trace: Return from square()

18

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5
Step 4: See the function call to square()

Let’s follow the flow of the code
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Code Trace: Return from square()

19

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5
Step 4: See the function call to square()
Step 5: Pass control from main() to square()

Let’s follow the flow of the code
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Code Trace: Return from square()

20

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5
Step 4: See the function call to square()
Step 5: Pass control from main() to square()
Step 6: Set the value of num1 in square() to x

Let’s follow the flow of the code

num1 = 5
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Code Trace: Return from square()

21

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5
Step 4: See the function call to square()
Step 5: Pass control from main() to square()
Step 6: Set the value of num1 in square() to x
Step 7: Calculate num1 * num1

Let’s follow the flow of the code

num1 = 5
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Code Trace: Return from square()

22

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5
Step 4: See the function call to square()
Step 5: Pass control from main() to square()
Step 6: Set the value of num1 in square() to x
Step 7: Calculate num1 * num1

Step 8: Return to main() and set y = return statement

Let’s follow the flow of the code

num1 = 5
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Code Trace: Return from square()

23

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5
Step 4: See the function call to square()
Step 5: Pass control from main() to square()
Step 6: Set the value of num1 in square() to x
Step 7: Calculate num1 * num1

Step 8: Return to main() and set y = return statement
Step 9: Print value of y

Let’s follow the flow of the code
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Testing: Return from square()

>>> print(square(3))

9

>>> print(square(4))

16

>>> x = 5

>>> y = square(x)

>>> print(y)

25

>>> print(square(x) + square(3))

34

24
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Functions with 
Multiple Return Values
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Returning Multiple Values

• Sometimes a function needs to 
return more than one value

• To do this, simply list more than one 
expression in the return statement

def sumDiff(num1, num2):

sum = num1 + num2

diff = num1 – num2

return sum, diff

26
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Accepting Multiple Values

• When calling a function with multiple returns, 
the code must also use multiple assignments

• Assignment is based on position, just like 
passing in parameters is based on position

sum, diff = sumDiff(xVal, yVal)

27
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Accepting Multiple Values
def main():

first  = int(input("Enter first number:  "))

second = int(input("Enter second number: "))

sum, diff = sumDiff(first, second)

print("The sum is", sum, 

"and the difference is", diff)

def sumDiff(num1, num2):

theSum = num1 + num2

theDiff = num1 - num2

return theSum, theDiff

main()

28
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def main():

first  = int(input("Enter first number:  "))

second = int(input("Enter second number: "))

sum, diff = sumDiff(first, second)

print("The sum is", sum, 

"and the difference is", diff)

def sumDiff(num1, num2):

theSum = num1 + num2

theDiff = num1 - num2

return theSum, theDiff

main()

Accepting Multiple Values

29

sum gets the first 
value returned

diff gets the second 
value returned
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def main():

first  = int(input("Enter first number:  "))

second = int(input("Enter second number: "))

sum, diff = sumDiff(first, second)

print("The sum is", sum, 

"and the difference is", diff)

def sumDiff(num1, num2):

theSum = num1 + num2

theDiff = num1 - num2

return theSum, theDiff

main()

Accepting Multiple Values

30

Notice that none of 
the variable names 

match!

Variable names do not
need to match when 

calling a function.

Remember scope!
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Every Function Returns Something

• All Python functions return a value

– Even if they don’t have a return statement 

• Functions without an explicit return hand 
back a special object, called None

– None is the absence of a value

31
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Common Errors and Problems

• Writing a function that returns a value but…

• Forgetting to include the return statement
>>> def test():

...     print("In the fxn")

...     var = 3

>>> var2 = test()

In the fxn

>>> print(var2)

None

32

Variable assigned to 
the return value will 

be None.
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Common Errors and Problems

• Writing a function that returns a value but…

• Forgetting to assign that value to anything
>>> def test():

...     print("In the fxn")

...     return 3

>>> var2 = 7

>>> test()

In the fxn

>>> print(var2)

7
33

The variable var2 was 
not updated; the code 

should have read
var2 = test()
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Common Errors and Problems

• Writing a function that returns value(s) but…

• Not assigning the right number of variables
>>> def test():

...     print("In the fxn")

...     return 3

>>> var1, var2 = test()

In the fxn

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'int' object is not iterable
34
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Common Errors and Problems

• If your value-returning functions produce 
strange messages, check to make sure you 
used the return correctly!

TypeError: 'int' object is not iterable

TypeError: 'NoneType' object is not 

iterable

35
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Modifying Parameters
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Other Ways to Pass Back Information

• A return value is the main way to send 
information back from a function

• We may also be able to pass information back 
by making changes directly to the parameters

• One of the problems with modifying 
parameters is due to scope

37
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Bank Interest Example

• Suppose you are writing a program that 
manages bank accounts

• One function we would need to create is one 
to accumulate interest on the account

38

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance
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Bank Interest Example

• We want to set the balance of the account to 
a new value that includes the interest amount

39

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

main()
Is this what 

we expected?

1000

Image from pixabay.com

What is the output 
of this code?
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What’s Going On?

• We thought that the 5% would be 
added to the amount, returning $1050

• Was $1000 the expected output?

• No – so what went wrong?

– Let’s trace through the program and find out

40
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Tracing the Bank Interest Code
• First, we create two variables that are local to 
main()

41

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

main()

local variables 
of main()
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Tracing the Bank Interest Code
• Second, we call addInterest() and pass the 

local variables of main() as actual parameters

42

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

main()

Call to 
addInterest()

Passing amount 
and rate, which are 

local variables
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Tracing the Bank Interest Code
• Third, when control is passed to addInterest(), 

the formal parameters of (balance and rate) are set 
to the actual parameters of (amount and rate)

43

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

main()

Control passes to 
addInterest()

balance = amount

rate = rate
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Tracing the Bank Interest Code
• Even though the parameter rate appears in both 
main() and addInterest(), they are two 
separate variables because of scope

44

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

main()

Even though rate is in 
both main() and 
addInterest(), 

they are in different 
places in memory
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Scope

• In other words, the formal parameters 
of a function only receive the values of 
the actual parameters

• The function does not have access 
to the variable in main() that holds 
the actual parameter

45
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Mutability
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Mutable and Immutable

• In python, certain structures cannot be altered 
once they are created and are called immutable

– These include integers, strings, and tuples

• Other structures can be altered after 
they are created and are called mutable

– These include lists and dictionaries

47
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Scope and Mutability in Functions

• To get a better idea for how this works with 
functions, let’s look at an example

• We can call a function with actual parameters 
that are mutable or that are immutable

• When we alter the formal parameters in the 
function, we could overwrite, or we could 
update it (change the parameter in place)

48
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Scope and Mutability in Functions

49 From http://stackoverflow.com/a/25670170

Function is called, and formal parameter B
is assigned the actual parameter A

A is immutable
(int, string, tuple)

A is mutable
(lists, or dicts)

A doesn’t change
If B changes

B is assigned to 
something else
B = [0, 1]

B is modified 
in place

B.append(2)

A doesn’t change
If B changes

A changes
If B changes
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Scope and Mutability in Functions

• A good general rule for if it will be altered:

• When you use the assignment operator, the 
parameter won’t actually be changed in main()

– Unless you are editing one element, like in a list

• When you use something like .append() on 
the parameter, it will be changed in main()

50
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The Bank Interest Example
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Updating Bank Interest

• The variable we wanted to update, balance, 
is a float, which means it is...

– Immutable

• We can’t change it from within the function

• What other options do we have?

– Change the function so it returns a newBalance

52
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New Bank Interest Code

53

def main():

amount = 1000

rate = 0.05

amount = addInterest(amount, rate)

print(amount)

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

return newBalance

main()
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New Bank Interest Code

54

def main():

amount = 1000

rate = 0.05

amount = addInterest(amount, rate)

print(amount)

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

return newBalance

main()

These are the only 
parts we changed
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New Bank Interest Code Trace

55

def main():

amount = 1000

rate = 0.05

amount = addInt(amount, rate)

print(amount)

main()

def addInt(balance, rate):

newBal = balance * (1 + rate)

return newBal

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set amount = 1000 and rate = 0.05
Step 4: Set amount = return statement of addInt()
Step 5: Pass control from main() to addInt()
Step 6: Set the value of balance in addInt() to amount
Step 7: Set the value of rate in addInt() to rate
Step 8: Set value of newBal to balance * (1 + rate)
Step 9: Return to main() and set value of amount = newBal
Step 10: Print value of amount

Let’s follow the flow of the code

Once we leave addInt(), the 
values of balance and rate are 

removed from memory
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Passing Lists to Functions
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Multiple Bank Accounts

• Instead of a single account, we are writing a 
program for a bank that has many accounts

–We could store the account balances in a 
list, then update the interest for each 
balance in the list

• We could update the first balance in the list 
with code like:
balances[0] = balances[0] * (1 + rate)

57
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Multiple Bank Accounts

balances[0] = balances[0] * (1 + rate)

• This code says, “multiply the value in the 0th

position of the list by (1 + rate) and store the 
result back into the 0th position of the list”

• A more general way to do this would be 
with a loop that goes through the indexes 
from 0, 1, …, length – 1

58
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Example: Multiple Interest
# addinterest3.py

# Illustrates a mutable parameter (a list)

def addInterest(balances, rate):

for i in range(len(balances)):

balances[i] = balances[i] * (1 + rate)

def main():

amounts = [1000, 2200, 800, 360]

rate = 0.05

addInterest(amounts, rate)

print(amounts)

main()

59
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Multiple Interest Output

• Our original code had these values:
[1000,   2200,    800,    360]

• The program returns:
[1050.0, 2310.0,  840.0,  378.0]

• Because balances is a list, and we are 
updating it in place, so the actual values are 
changed

60
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Announcements

• Homework 5 is due Wednesday

– Homework 3 grades went out Sunday night

• Homework 6 does not come out this week

– It will come out the night of October 20th

• The midterm exam is when?

– During class on October 19th and 20th!

61


